Characterization of Tissue Response to Impact Loads Delivered Using a Hand-Held Instrument for Studying Articular Cartilage Injury
نویسندگان
چکیده
OBJECTIVE The objective of this study was to fully characterize the mechanics of an in vivo impactor and correlate the mechanics with superficial cracking of articular surfaces. DESIGN A spring-loaded impactor was used to apply energy-controlled impacts to the articular surfaces of neonatal bovine cartilage. The simultaneous use of a load cell and displacement sensor provided measurements of stress, stress rate, strain, strain rate, and strain energy density. Application of India ink after impact was used to correlate the mechanical inputs during impact with the resulting severity of tissue damage. Additionally, a signal processing method to deconvolve inertial stresses from impact stresses was developed and validated. RESULTS Impact models fit the data well (root mean square error average ~0.09) and provided a fully characterized impact. Correlation analysis between mechanical inputs and degree of superficial cracking made visible through India ink application provided significant positive correlations for stress and stress rate with degree of surface cracking (R (2) = 0.7398 and R (2) = 0.5262, respectively). Ranges of impact parameters were 7 to 21 MPa, 6 to 40 GPa/s, 0.16 to 0.38, 87 to 236 s(-1), and 0.3 to 1.1 MJ/m(3) for stress, stress rate, strain, strain rate, and strain energy density, respectively. Thresholds for damage for all inputs were determined at 13 MPa, 15 GPa/s, 0.23, 160 s(-1), and 0.59 MJ/m(3) for this system. CONCLUSIONS This study provided the mechanical basis for use of a portable, sterilizable, and maneuverable impacting device. Use of this device enables controlled impact loads in vitro or in vivo to connect mechanistic studies with long-term monitoring of disease progression.
منابع مشابه
Mesenchymal Stem Cell Purification from the Articular Cartilage Cell Culture
Objective Articular cartilage as an avascular skeletal tissue possesses limited capacity to heal. On the other hand, it is believed that the regeneration capacity of each tissue is largely related to its stem cell contents. Little is known about the presence of mesenchymal stem cells in articular cartilage tissue. This subject is investigated in the present study. Materials and Methods Artic...
متن کاملMesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملAn In Vivo Lapine Model for Impact-Induced Injury and Osteoarthritic Degeneration of Articular Cartilage
OBJECTIVE In this study, we applied a spring-loaded impactor to deliver traumatic forces to articular cartilage in vivo. Based on our recent finding that a 0.28-J impact induces maximal catabolic response in adult bovine articular cartilage in vitro using this device, we hypothesize that this impact will induce the formation of a focal osteoarthritic defect in vivo. DESIGN The femoral condyle...
متن کاملUsing Xenogenic (Calf Foetal) Osteochondral Transplantation for Articular Cartilage Defect in Rabbit Model
Background: The destruction of articular cartilage is the major cause of articular problems. The articular cartilage has little repair postertial due to lack of perichondrium and direct blood circulation. It is, therefore important to consider this phenomena in surgical treatments. One of the articular cartilage reconstructive surgeries is using Osteo-Chondral graft. The main purpose of this re...
متن کاملThe comparison of the effect of an aerobic training period and ozone therapy on gene expression of Beclin-1, AMPK and mTOR of articular cartilage tissue in rats model of osteoarthritis
Introduction The aim of the research was to investigate the effect of 8 weeks’ exercise training and ozone therapy on articular cartilage tissue mRNA Beclin-1, AMPK, and mTOR gene expression in rat’s model of osteoarthritis (OA). Materials and Methods In this experimental study, 40 adult male rats 210±10 gr were randomly divided into 5 groups: 1) control (CN), 2) OA, 3) OA + ozone, 4) OA + ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015